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Abstract We present some Farkas-type results for inequality systems involving finitely
many DC functions. To this end we use the so-called Fenchel-Lagrange duality approach
applied to an optimization problem with DC objective function and DC inequality constraints.
Some recently obtained Farkas-type results are rediscovered as special cases of our main
result.
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1 Introduction

Since optimization techniques became more and more used in various fields of applications,
an increasing number of problems that cannot be solved using the methods of linear or
convex programming arised. Many of these problems are DC optimization problems, i.e.
problems whose objective and/or constraint functions are functions which can be written
as differences of convex functions. Although the largest number of the papers on this field
present techniques of solving DC programming problems ([7,14,17,18]), the study of dual
conditions characterizing global optimality has not been neglected ([2,5,6,9-13,16]).

The problem we treat in this paper consists in minimizing an extended real-valued DC
function defined over the space R with respect to finitely many extended real-valued DC
constraint functions. To this problem we determine its Fenchel-Lagrange-type dual problem,
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whose construction is described here in detail. The Fenchel-Lagrange dual problem is a
“combination” of the well-known Fenchel and Lagrange duals and was recently introduced
by Bot and Wanka for convex optimization problems by means of the perturbation approach
from the theory of conjugate duality ([1-4,21]). By using the same technique like Martinez-
Legaz and Volle in [13], we reduce the study of the duality for DC problems to the study of
the duality for convex optimization problems and in this way we define a dual problem for the
primal DC one. A constraint qualification which guarantees the existence of strong duality
is also given. Regarding other duality concepts for DC optimization problems we invite the
reader to consult [11,12,19,20].

Recently in Refs. [3] and [4] some Farkas-type results for inequality systems involving
finitely many convex constraints have been presented, by using an approach based on the
theory of conjugate duality for convex optimization problems. The aim of this paper is to
extend these results to inequality systems involving DC functions by using the duality theory
developed for DC optimization problems. We shown that some results which can be found
in the existing literature ([3,8,9]) arise as special cases of the problem we treat. More than
that, we derive some equivalent formulations which rediscover some results given in the past
in a general framework ([10, 16]).

The paper is organized as follows. In Sect. 2 we present some definitions and results that
are used later in the paper. In Sect. 3 we give a dual problem for the optimization problem with
DC objective function and DC inequality constraints. Section 4 contains the main result of
the paper; using the duality acquired in Sect. 3 we give a Farkas-type theorem for inequality
systems involving DC function. In the last section we deal with some particular instances,
rediscovering in this way some existing results in the literature.

2 Notations and preliminaries

In this section we introduce some notations and preliminary results which shall be used in the
paper. All vectors are considered to be column vectors. Any column vector can be transposed
to a row vector by an upper index 7. By xTy = > xiy; we denote the usual inner product
of two vectors x = (x1,...,x,)7 and y = (y1, ..., y,)7 in the real space R”".

By ri(X), co(X) and cl(X) we will denote the relative interior, the convex hull and the
closure of the set X € R", respectively. Furthermore, the cone and the convex cone gene-
rated by the set X are denoted by cone(X) = (J;.oAX and, respectively, coneco(X) =
;>0 A co(X). For an optimization problem (P) we denote by v(P) its optimal objective
value.

For a set X C R” we consider the indicator function of X

= 0 xeX
. RN _— _ ) )
§x :R" > R=RU{£o0}, 5x(x) = [ too. otherwise,

and the support function of X, ox : R" — R, ox(u) = sup u” x, respectively.
xeX

For a given function f : R” — R, we denote by dom(f) = {x eR": f(x) < +oo}
its effective domain and by epi(f) = {(x,r) tx e R r e R, f(x) < r} its epigraph,
respectively. We say that f is proper if its effective domain is a nonempty setand f(x) > —oo
forall x € R".

When X is a nonempty subset of R” we define for the function f : R” — R its conjugate
relative to the set X by fy : R" — R, f3(p) = sup {pTx — f(x)}. For X = R” the

xeX
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conjugate relative to the set X is actually the (Fenchel-Moreau) conjugate function of f,
PR >R, f5(p) = sup {pTx — fl0)}.
xeR”
For an arbitrary x € R” with f(x) € R the subdifferential of the function f at x is the set
f ) ={x* eR": f(y) — f(x) = (y — ) x* Vy e R"}.

The function f is said to be subdifferentiable at x € R"(f(x) € R) if 3f (x) # @. For all
x and x* in R” we have f(x) + f*(x*) > x*Tx (the Young-Fenchel inequality) and it can
be shown that if f(x) € R

FO) + A" =xTx & x* €df(x). (1)

Alongside the natural operations with +o00 and —oo we adopt the following conventions
(cf. [2,13])

(+00) — (+00) = (—00) — (—00) = (+00) + (—00) = (—00) + (+00) = +00,
0(+00) = 400 and 0(—o0) = 0.

It is easy to see that for f : R” — R the last two conventions imply 0 f = 8qom(f)-

Definition 2.1 Let the functions fi, ..., f,, : R* — R be given. The infimal convolution
function of f1, ..., fi, is the function f10...0f, : R* — R defined by

m

(le...Dfm)(x):inf[Zfi(xi):x:in].

i=1 i=1

Theorem 2.1 (cf. [15]) Let fi, ..., fmu : R" — R be proper convex functions. If the set
N, ri(dom( f;)) is nonempty, then

(Zﬁ) (p) = (ffO...0f)(p) = inf ( D ffp)p= ZP[}
i=1 i=1 i=1

and for each p € R" the infimum is attained.
A simple consequence of the Theorem 2.1 which closes this preliminary section follows.

Corollary 2.2 Let f1, ..., fin : R* — R be proper convex functions. If the set
N, ri(dom( f;)) is nonempty, then

epi ((Zﬁ) ) = > epi(f).
i=1 i=1

3 Duality for the DC programming problem

Let us consider the following optimization problem

(P) inf g(x) — h(X)),
xeX

4 () —hi (X) <0,
i=l1,..., m
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where X is a nonempty convex subset of R”, g,h : R" — R are two proper convex

functions and g;, h; : R" — R,i=1,...,m,are proper convex functions such that
m
(i (dom(g) ()i (dom(g)) () ri(X) # . )
i=1

We denote by F(P) = {x eX:g(x)—hikx)<0,i=1,..., m} the feasible set of
(P) and we assume that F(P) # (. Moreover, we assume that  is lower semicontinuous
on F(P) and that h;,i =1, ..., m, are subdifferentiable on F(P).

Lemma 3.1 It holds

F(P) = U [xeX:gi(x)—y;“Tx+h;k(y;‘)§0,i=1,...,m].
y; edom(h),
i=1,...m

Proof “C” Let x € F(P). By the assumptions we made, it follows x € N_; dom(k;) and
the existence of y! € dh;(x) foralli =1, ..., m. By (1) we have g; (x) — yl?"Tx +hI(y)H) =
gi(x) —hij(x) <Oforalli =1,...,m.
m
“2” For the opposite inclusion, let y* = (¥}, ..., y5) € [] dom (h;‘) and x € X such
i=1
that g; (x) —y;‘Tx—}—h;‘(yi*) <Oforalli =1,...,m.Thus,fori =1,...,m, g;(x) < +o0.
Since (cf. the Young-Fenchel inequality) g; (x) — h; (x) < gi(x) — yl.*Tx +hi(yf) <0,i=
1, ..., m, the conclusion follows. O

m
Throughout the paper we shall use the notation y* € [] dom(h}) for y* € dom(h),
i=1
i =1,...,m, where y* is the m-tuple (y{, ..., y;,). By Lemma 3.1 we get an equivalent
formulation for the optimal objective value of the problem (P).

Theorem 3.2 Under the hypotheses considered in this section it holds

v(P)=  inf inf [g(x) —x*Tx £ h* (Y. A3)
x*edom(h™*), ¥€X,
y*E H dom(h;k) 8i (x)*yii_lx‘f’hi (.V,' )=<0,
i=1 =

Proof Since h is proper, convex and lower semicontinuous on F(P) it holds

hx)=h*x) = sup {x*Tx —h* ).

x*edom(h*)

Thus,

v(P) = inf (g(x) — h(x)) = [g(x) —x*Tx + i H .
x€F(P)

inf inf
x*edom(h*) xeF(P)

Using the decomposition of the set 7 (P) given by Lemma 3.1, the conclusion is straight-
forward. O

Taking a careful look at relation (3), one may notice that the inner infimum can be seen as
an optimization problem with a convex objective function and convex inequality constraints.
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Thus it is quite natural to consider it as a separate optimization problem in order to deal with
it by means of duality

(Pyx,y+) inf (g(x) —x*Tx 4 h*(X*)),
- xeX,
&)=y x4tk (v <0,

i=

m
where x* € dom(h*) and y* € [] dom(h}).

i=1

m
Let x* € dom(h*) and y* € [] dom(h}) be fixed. We construct a dual problem for
(Py+,y+) and give sufficient Conditiolnsl such that strong duality holds, i.e. the optimal objective
value of the primal coincides with the optimal objective value of the dual and the dual has
an optimal solution. Considering the functions g : R” — R, g(x) = g(x) — T x + h*(x*)
andg; :R" — R, g; (x) = gi(x) — yi*Tx +hi(y}),i =1,...,m,the problem (Py« y+) can
be equivalently written as

(Px*,y*) ~xiél)f(‘, g(x).

One can notice that since g and g; are proper and convex, the function g and g; are proper
and convex, too, fori = 1, ..., m. Next we consider the Lagrange dual problem to (Py+ y+)
withg = (g1, ..., qu)T € R’ as dual variable

m
Dys inf |37 Ziol.
(Dy+,y+) sg;gx ‘g(x) + l;ngl(x)]

The inner infimum can be equivalently written as

inf [‘g(x) + Zqigi(x)] = —(§+ Zq@) (0).
* i=1 i=1 X

Taking into consideration the convexity and the properness of the functions g and g;,
i =1,...,m,and that (2) is fulfiled, it follows by Theorem 2.1 that

(§+Zq,-§f) 0) = (§+Z§i +5x) 0) =
i=1 X

i=1
inﬂ{n‘?(z) + (Zq@ +5x) (—Z)] = inﬂgl[?(z) + (2%@) (—Z)]
ZE el z€ i1 X

and the infimum is attained for some z € R".
This leads to the following formulation for the dual (D, y+)

(Dy=.y*) sup [ R ACE (qugi) (—z)].
zeR", i=1 X
q20
Since g%*(z) = g*(x™ + z) — h*(x*) and
(Zqigi) (—2) = (Zqz'gi) (zqz‘yi* - Z) = > ahi o).
i=1 X i=1 XNz i=1
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it follows immediately that the dual (D ,+) has the form (we take p := x* 4 z)

(Dy*,y#) sup [h*(x ) + Zq;h 09 —&"(p)

peR" i=1

~(Zos) ez )}

Theorem 3.3 Between the primal problem (Pyx y+) and the dual (Dyx y+) weak duality is
always satisfied, i.e. V(Pyx y+) > v(Dyx y*).

Since in the general case strong duality can fail, in order to avoid such a situation we introduce
the following generalized interior point constraint qualification (cf. [15])

Ix' € ﬂ i (dom(g;)) (i (dom(g)) M ri(X) such that

* i=1
(CQy ) gl(x/)_ *T /+h*(yl)<0 i€eL,
gi(x) T yi+hi(y)) <0, ieN,

where L := {i € {1,...,m} : g is an affine function} and N := {1, ..., m}\L.
Regarding strong duality between (Py+ y+) and (Dy= y+) we have the following assertion.

Theorem 3.4 Assume that v(Pyx y+) is finite. If (C Qy+) is fulfiled, then between (Pyx y+)
and (Dyx y+) strong duality holds, i.e. v(Pyx y+) = v(Dyx y+) and the dual problem has an
optimal solution.

Proof To the problem

(Pyx,y+) inf  g(x)
xeX

we associate its Lagrange dual problem
sup inf [g(x) + Zq,g, (x)]
q>OXE im1

Since the condition (C Q y+) is fulfiled, by Theorem 28.2 in Ref. [15], the optimal objective
values of (Py+ y+) and its Lagrange dual are equal and, moreover, there exists an optimal
solutiong = (g1, ..., g, € R’ of the dual such that

V(P y) = sup inf [g(x) + Zngl (x)] = inf [?(x) + Z%@i(x)].
‘I_ i=1

i=1

Further we deal with the infimum in the last term of the equality from above. As dom(g) =
dom(g) and dom(3_7", ;%) = N, dom(g;) = N/, dom(g;), it holds

ri (dom(®)) é ri (dom (éqi‘gi)) (i (X) #0.
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which implies that (cf. Theorem 2.1)

v(Pye,y) = inf [gm +> g% (x)] = —(§ + Zm-) 0)
xXe e X

| -7 - (Xaa) o)
X

zeR"

and that there exists 7 € R” such that the supremum is attained. Thus

V(Pys yo) = supl - - (Zé{gﬁ) (—z)] =@ - (Zﬁ{gﬁ) (-2)
i=1 X im X

zeR"

—g*(x*+2)+h*(x*)—(25igi) (Zq,y, ) quh,(y,-

i=1

For p := x* + z, it follows
m
V(Pes ye) = h*(x*) + D q;h (5)) — g% (P) — (Zq gt) (x +Zq i = )
i=1

and so we get that v(Pyx y+) = v(Dyx ) and (p, ) is an optimal solution for (Dyx y+).
O

Taking into consideration the results given by Theorems 3.2 and 3.4, it seems natural to
introduce the following dual problem to (P)

D inf h* + h* *
D) L qsug[ (%) ;% FOH 8" (p)

n
y*e[] dom(h}) PER

m % m
- (Zas) (v +Zaor -0}
i=1 X i=1
By the construction of (D) there is a weak duality statement for (P) and (D) as follows.

Theorem 3.5 It holds v(P) > v(D).

Concerning the strong duality between (P) and (D), based on the the considerations done
above we have the following theorem.

m
Theorem 3.6 Let (C Qy+) be fulfiled for all y* € [] dom(h}). Then v(P) = v(D).
i=1

4 Farkas-type results for inequality systems with DC functions

By using of the duality theory developed above, we can give now the following Farkas-type
result.

m
Theorem 4.1 Suppose that (C Qy+) holds for all y* € [] dom(h}). Then the following

i=1
assertions are equivalent:
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(i) x€X,8(x)—hi(x) <0,i=1,....m= g(x) — h(x) > 0;
m
(ii) Yx* € dom(h*) and ¥y* € [] dom(h}), there exist p € R" and g 2 0 such that

i=1

W)+ D aihf () — g°(p) — (Zqz'gi) (X* + > gy - p) >0. (4
i=1 i=1

*
X i=1

m
Proof “(i) = (ii)” Let be x* € dom(h*) and y* € [] dom(h}). The statement (i) implies
i=1
v(P) > 0 and using Theorem 3.2 we acquire v(Py+ y+) > 0. Since the assumptions of
Theorem 3.4 are achieved, strong duality holds, i.e. v(Dy+ y+) = v(Pyx y+) > 0 and the dual
(Dy y+) has an optimal solution. Thus there exist p € R” and ¢ = 0 such that relation (4)
is true.
m
“(ii) = (i)” Consider x* € dom(h*) and y* € [] dom(h}). Then there exist p € R"
i=1
and ¢ = 0 such that (4) is true and so

m m
sup [h*(x*) + D aihi (5)) = ¢ (p) — (Zqigi)
peR", i=1 i=l

q20

*

X

(X* + > iy - p)] > 0.
i=1

Since x* and y* were arbitrarily chosen we have v(D) > 0. Weak duality between (P)
and (D) always holds and thus we obtain v(P) > 0, i.e. (i) is true. a

In the following we formulate Theorem 4.1 as a theorem of the alternative.

Corollary 4.2 Assume the hypothesis of Theorem 4.1 fulfiled. Then either the inequality
system

() xeX, gx)—hix)<0,i=1,....,mgx)—hx) <0
has a solution or each of the following systems
m m * m
(I Lex o) B*(x™) + 2qih} (3]) — 8% (p) — (Z‘hgi) (x*+ Zqiyi*—p) >0,
i=1 i=1 X i=1
peR,qg=0,

where x* € dom(h*) and y! € dom(h}), i =1,...,m, has a solution, but never both.

Next we give an equivalent assertion to the statement (ii) in Theorem 4.1 using the epi-
graphs of the functions involved.

Theorem 4.3 The statement (ii) in Theorem 4.1 is equivalent to

it e [epi(g*)+coneco[U(epi(g;")—(y;“,h;-“(y;")))]

i=1

m
y*e[] dom(h})
i=1

+ epi(ax)].
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m
Proof “=" We prove that for an arbitrary y* = (y{, ..., y;) in the set [ dom(h}),
i=1

m

epi(h*) € epi(g™) + coneco [ U (epi(gi*) - (7. h?(y;")))} +epilox).  (5)

i=1

To this end let (x*, r) be a given element in epi(h*). Thus x* € dom(h*) and assertion
(2) implies the existence of p € R" and ¢ = 0 such that the relation (4) is true. Consider
first that ¢ = 0. Relation (4) becomes h*(x*) — g*(p) — 8% (x* — p) > 0. Since r > h*(x*)
we have r — g*(p) = 8% (x* — p). Thus (x*,7) = (p, g*(p)) + (x* — p,r — g*(p)) €

epi(g*) + epi(ox) C epi(g*) + coneco [ UL, (epl(g*) — (yl ChEOF )))i| + epi(ox).

Now we assume that g # 0. The set I, = {i : g; # 0} is obviously nonempty and relation
(4) looks like

R () + > qihf () — g*(p) — (Zqigi) (x* + D a4y — p) > 0.

iely i€l X i€l

*

In the hypotheses given by (2) we have

(Zngl) (x + > aiv; —p) (Zqigi+8x)*(X*+Zqiy;*—p)

i€ly i€l iely i€l
— inf [ D (g i) +ox(@) X+ D qiyf —p =D vi+ z],
iely iely iel,

and this infimum is attained for some vectors z and v;, i € Iy, in R". It follows that
R )+ D7 qihi (0F) = g% (p) + D _(qig)* (i) + ox(2),
i€l iel,
where x* + Zielq gy —p= zielq v; +z. Since ¢; > 0,1 € I, we have (g;g;)*(v;) =
qi g’ (ivi . Considering the vectors v, € R", v| := Loii e I, we get x* = p +

qi
Yier, 9i (v — ¥) +zand
PR = (P + D g (g? (v}) - h?(y?)) +ox(2).
iel,
On the other hand, because of

(v =516 6) = 12060)) U (epiten) = 67, 707) )i < 4

i=1

we have
(Zq,- W = 31). S ai(e (o) - h?‘(yi‘))) -S (v; g ) - h?(y;‘v)
i€l i€l iely

m

€ coneco |: U (epi(gf) -0 hz*(yz*)))]

i=1
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which implies that

(x*7 r) € epi(g*) + coneco [ U (ep1(gl yl ,h (yl ))):| + epi(ox).

m
“«=" Let us consider x* € dom(h*) and y* € [] dom(h}). Since
i=1
(x*, h*(x™)) € epi(h®) <
m

epi(g™) + coneco [ U (epi(gf‘) - (7, h?(y?‘)))] + epi(ox),

i=1

there exist (p, r) € epi(g*), (v, s) € coneco |: U (epl(gl )— (yl , h*(yl )))i| and (z,1) €
epi(oy) such that

(F* B5@) = (por) + (05) + (2, 1). ©)

Moreover, there exist A > 0, u; > 0and (v;, 57) € epi(g}) — (yF, b (yF)).i=1,....m,
such that 37" ; u; = 1 and

(v, s) =)\Zl/«i(vivsi)- @)

i=1

Foralli € {1,...,m} wehave (vi+yf, si+h¥(y})) € epi(g}) and it follows immediately
that

g Wi +y) —hi () < si. ®)

Assume first that A = 0. Then (v, s) = (0, 0) and relation (6) becomes (x*, h*(x*)) =
(p,r) + (z,t). Since r > g*(p) and t > ox(z) = 8%(z), this implies x* = p + z and
h*(x*) > g*(p) + 8% (z). Considering g := (0, ..., 0)7 € R™ it holds

m * m
h*(x™) = g*(p) + (Z‘Iigi + 3x) (X* + > qivi — p),
i=1

i=1

and the conclusion is straightforward.

In case A > 0, let us consider the vector ¢ = (Aut1,..., Aum)? € R™. Since it
holds > w; = 1, the set I, is obviously nonempty and relation (7) becomes (v, s) =
Dic I qi(v;, s;). Taking into consideration relation (8) we obtain v = >, 1, 9ivi and
s = Zielq qisi > Zielq i (gF(vi + ) — hi(y¥)). Combining these two results with
relation (6) and with the inequalities g*(p) < r and 8%(z) = ox(z) < t we obtain

=P+ 2es, qivi +zand

R (x*) = g*(p) + D qi(8f i + y{) — hF () + 8% (2).

iely
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By the properties of the conjugate of the sum of a family of functions we obtain

D aqigf i+ ) + 8% @ = D (aigi) (qivi + aiy}) + 8% ()

i€l i€l
= (Zqz'gi +5x) (Zqzyz + g +z)
i€l i€l i€l
(qug,) (quyl +x* —p) (Zq,gl) (x +quy, )
iel, i€l
The desired conclusion arises easily. O

Remark 4.1 Dual geometrical characterizations for the solvability of inequality systems
expressed by means of inclusion relations involving the epigraphs of the conjugates of the
functions involved have been given in the pastin Refs. [10, 16] (even in very general settings),
[8] and [3]. The last theorem shows that the geometrical characterization for the solvability
of inequality systems from Ref. [10] can be expressed by using the objective function of the
Fenchel-Lagrange-type dual of the DC primal problem. On the other hand, one can see that
in the finite dimensional setting the regularity conditions given in Ref. [10] can be replaced
by generalized Slater-type constraint qualifications.

5 Special cases

In this section we give Farkas-type results for some problems which turn out to be special
cases of the problem (P).

5.1 Thecase h =0

The problem (P) becomes in this case an optimization problem with a convex objective
function and finitely many DC constraint functions.

Since in this case dom(A#*) = {0} and epi(h*) = {0} x [0, +00), the following theorems
can be easily obtained from Theorems 4.1 and 4.3, respectively.

m

Theorem 5.1 Suppose that (C Qy+) holds for all y* € [] dom(h}). Then the following
i=1

assertions are equivalent:

(i) xeX, gx)—hix) <0,i=1,...,m= g(x) >0,

m
(ii) Vy* € [] dom(h), there exist p € R" and g 2 0 such that
i=1

> aihi () —g*(p) — (Zqigi)x(zcny?‘ - p) > 0.
i=1 i=1

i=1
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Theorem 5.2 The statement (ii) in Theorem 5.1 is equivalent to
m

0e m [ epi(g*) + coneco |: U (epi(g;k) — (v}, h}k(yi*)))]

m i=1
y*e[] dom(r)

i=1
+ epi(ax)]. 9)

Proof Theorem 4.3 ensures the equivalence between the statement (ii) in Theorem 5.1 and
the relation

O x[0.+00)C [ {epi(g*)+coneco[U(epi(g;‘)—(y;ﬁh;%y;‘)))]
y*eilf[ldom(hf)

i=1

+ ePi(UX)]-

By using the definition of the epigraph of a function one can see that this is nothing else
than (9). O

Remark 5.1 In this section we rediscover the Farkas-type results given in Ref. [3].
52 Thecase h; =0,i=1,...,m

The problem (P) is now an optimization problem with a DC objective function and finitely
many convex constraint functions.

It is obvious that foralli = 1, ..., m we have
ko _ | F00, ¥ #O,

m
Thus, we have [] dom(h}) = {(0,...,0)} and the constraint qualification (C Q) for
i=1

m
y* € [[ dom(h}) turns out to be
i=1

gi(x) <0, ielL,

(CQp) 3x’ € ri(X) (N ri(dom(g)) _ﬂl ri (dom(gi)) : ‘ a(x) <0, ieN.

i=
Theorem 5.3 Suppose that (C Qo) holds. Then the following assertions are equivalent:

(i) xeX gx)<0,i=1,....m=gk)—h(x) >0
(ii) Yx* € dom(h™), there exist p € R" and q = 0 such that

m *
h*(x*) — g*(p) — (Z‘Jigi) (x* = p) = 0.
i=1 X
Theorem 5.4 The statement (ii) in Theorem 5.2 is equivalent to
m
epi(h™) C epi(g*) + coneco [ U epi(gf)] + epi(oy).

i=1
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Both Theorems 5.3 and 5.4 are again direct consequences of Theorems 4.1 and 4.3,
respectively. They express, as particular cases of our general result in Sect. 4, the outcomes
obtained by Bot and Wanka in Ref. [3] and by Jeyakumar and Glover in Ref. [9].

Remark 5.2 A very helpful characterization for the existent of a -optimal solutions for the
optimization problem with DC objective function and convex inequality constraints has been
given in Ref. [10] by means of the e-subdifferentials of the functions involved.

53 Thecaseh =0and h; =0,i =1,...,m

In this case our initial problem turns out to be a standard convex optimization problem with
a convex objective function and finitely many convex constraint functions. The constraint
qualification becomes also (C Q).

This special case has been treated in [3], [8] in finite dimensional spaces, but also in [16]
and [10] in infinite dimensional spaces. Let us mention that our results are identical to the
ones in [3], where alongside convex inequalities the inequality systems contain also some
geometrical constraints.

Theorem 5.5 Suppose that (C Qo) holds. Then the following assertions are equivalent:

(i) xeX, gx)<0,i=1,....m=gkx) >0;
(ii) there exist p € R" and q = 0 such that

" (p)+ (Zqz'gi) (—p)=<o0.

i=1 X

Theorem 5.6 The statement (ii) in Theorem 5.5 is equivalent to

m
0 € epi(g*) + coneco [ U epi(g;k):| + epi(oy).
i=1

6 Conclusions

In this paper we present Farkas-type result for inequality systems with finitely many DC
functions. The approach we use is based on the conjugate duality for an optimization problem
with DC objective function and DC inequality constraints. We generalize and rediscover some
results given in the past in the literature. Also the connection which exist between the Farkas-
type results and the theory of the alternative and, respectively, the theory of duality is put in
a new light and underlined once more.
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improved the quality of the paper.
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